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An effective algorithm is developed for increasing the accuracy of a numerical solu- 
tion of the equations of mathematical physics. In the first stage of the algorithm, 
with the aid of a stable method, values of the unknown function are calculated at the 
nodes corresponding to the Gauss--Legendre quadratures (GLQ). In the second stage 
recalculation is carried out in accordance with the GLQ formulas. 

A method for integrating ordinary differential equations (ODE) by means of Gauss--Legendr e 
quadratures possessing the highest algebraic degree of accuracy was considered previously in 
[i], but, in its time, did not find wide practical application. In the present paper, with 
the aim of increasing the accuracy of a numerical solution of the equations of mathematical 
physics, we propose to use the GLQ method in combination with some stable method of low or- 
der of accuracy. In this connection, the calculations are carried out in two stages. In the 
first stage, using the stable method selected, approximate values of the unknown function are 
obtained at the nodes of an auxiliary grid corresponding to the GLQ. In the second stage a 
recalculation is carried out according to the GLQ formulas. We show, as a result of intro- 
ducing such a procedure, that the accuracy of the final result is increased. 

The method for increasing the accuracy of a numerical solution of the equations of mathe- 
matical physics using the GLQ formulas is tested on a series of Cauchy problems for first or- 
der ODE and on a second boundary value problem for the heat conduct• equation. 

i. Increasing the Order of Accuracy of an Approximate Solution of a Cauchy Problem for 
a First Order ODE. Let us assume that it is required to find a function u(t), continuous for 
t0~tj , satisfying the differential equation 

du = f (u, t) ( 1 )  
dt 

and the initial condition 

tt (to) = tto. ( 2 )  

We assume that the solution of problem (1)-(2) exists and is unique, i.e., we assume thatall 
the conditions of an appropriate theorem guaranteeing the existence and uniqueness of a solu- 
tion of a Cauchy problem (see [2]) are satisfied. 

On the interval [to, tf] we introduce a uniform grid with integral nodes 

th = to + k'~, (3 )  

where k = 0, i, 2, ..., N; �9 = (tf- to)/N is the grid step. We also introduce an auxiliary 
nonuniform grid with nodes defined by the relations 

tki = tk + ~Oi, (4 )  

where i = i, 2, ..., n; e i are the GLQ nodes [3]. 

We assume that on the auxiliary grid {tki} the grid function Yki is found with the aid 
of some stable method, this function being an approximate solution of the Cauchy problem (i)- 
(2), whereby the maximum error does not exceed some quantity c~ in absolute value. 

We integrate equation (i) in a strip from t k to tk+l: 
th+l 

Uh+l = Uh -[- t" f (U, Z) dz ,  ( 5 )  ,) 
t h 
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where u k is the exact value of the unknown function at the node t k. Relation (5) is exact as 
long as we do not apply to the integral on the right side a quadrature formula for its numer- 
ical integration, each such formula generating a specific computational process. Applying 
the GLQ formulas to equation (5), for a recalculation we obtain 

n 

= + (6) 
i=l 

where fki = f(Yki, tki) are approximate values of the right side of equation (I); mi are the 
GLQ weights [3], and Yk is a grid function giving an approximate solution of the Cauchy prob- 
lem (1)-(2) on the uniform grid. 

We show that the application of formula (6) makes it possible to increase the order of 
accuracy of the intermediate result. Since Yki is determined in the first stage with an er- 
ror not exceeding BI in absolute value, 

9h~ = uk~+___el, (7) 

it follows that fki is determined from formula (7) with error not exceeding some quantity e2. 
Consequently, 

f ~  = h ~  - -  ~k~,. ( 8 )  

where fki = f(uki, tki) are the exact values of the right side of equation (i), obtained by 
substituting into it the exact values of the unknown function 

u~i  = u (the) (9) 

at the nodes corresponding to the GLQ, and the eki are the errors determined by equation (8). 
Substituting fki from equation (8) into equation (6), we obtain 

n n 

Yh+~ -Y~ + ~ ~f~ § �9 ~ ~)~(• e~) (I0) 
i ~ l  i = 1  

Since ,  by d e f i n i t i o n ,  ek i  does no t  exceed ca,  we can r e p r e s e n t  the remainder  i n  formula  (10) 
in the form 

( l l )  
i = !  

We have here used the fact that (see [4]) 

~ i : 1. (12) 
i=! 

Thus we obtain the following estimate for equation (I0): 

gh+1 : Yh + ~ ~ + Te~. (13) 
i=! 

The appropriateness of applying the given algorithm depends, consequently, on the rela- 
tionship of the quantities Ex, e=, and Y. In this case it is appropriate to apply the algo- 
rithm if the following relationship is satisfied: 

8 = ~e~ < el. (14) 

Starting from the condition (14), we can easily determine the step size T guaranteeing the 
required accuracy e. 

Remark. The error of the GLQ method itself, arising due to approximating the integral 
in equation (5) by the finite sum in equation (6), is readily determined from well-known for- 
mulas [4] and is not considered here on the assumption that it can be made less than that in 
relation (14) by choosing the number of nodes in the GLQ. 

2. Solution of the Second Boundary Value Problem for the Heat Conduction Equation by 
the GLQ Method. We consider the second boundary value problem for the linear normalizedheat 
conduction equation in temperature form 

Ou 02u 
. . . .  , o ~ < x ~ <  1, (15) 

Ot Ox 2 
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with boundary conditions 

and initial condition 

o.(.,o, t) ].:o= o,,(.,o.0 .=,I = ,(t) (16) 

. (x, 0) = u0 (x) (17)  

I t  was shown in  [6] t h a t  a numer ica l  s o l u t i o n  of  the  second boundary va lue  problem in  
the temperature form (15)-(17) is nonconservative, i.e., it does not satisfy the discrete ana- 
log of the conservation law for energy. It was shown there that a transition to the flux form 
makes it possible to eliminate this shortcoming. The appropriate transition is effected by 
introducing the heat flow function 

W (x, t) = Ou (x, t) 
Ox (18) 

Equation (15) and conditions (16)-(17) are thus transformed to the following form: 

OW O~W 

Ot Ox~ 
(19) 

(20) 

(2l) 

W(O, 0 = ~ ( 0 ,  W(1, t ) = ~ ( O ,  

w (x, o) = Ouo (x) 
Ox 

The boundary value problem of the second kind becomes thereby a boundary value problem of the 
first kind relative to the function W(x, t). To solve the problem (19)-(21) by the method of 
finite differences, one can choose, for example, an implicit scheme with weights [5] or the 
method of asymmetric difference schemes (ASD), described in [7] for the Burgers equation and 
in [8] for a quasilinear heat conduction equation. An algorlthmwas presented in [9] for res- 
toration of the conservative property of the difference schemes, violated, as shown in [6], 
whendifference equations are solved by iterational methods. Moreover, the ASD method pos- 
sesses an algorithmic structure suitable for use on a multiprocess computer, since, in con- 
trast to the driver method, the ASD method does not require the preliminary procedure of trans- 
forming a sequential algorithm into a parallel type. 

As we did in Sec. i we introduce two grids. A uniform grid with equidistant nodes: x i= 
ih; i = 0, i, 2, ..., N-- i; h = l/N; t k = to + k~; k = 0, i, ..., K; T = (tf-to)/K, and an 
auxiliary grid, nonuniform with nonequidistant nodes along the spatial coordinate: x i- = 
x i + hSj, j = i, ..., n. It should be noted that distances between two arbitrary neighboring 
nodes ol the auxiliary grid having a fixed index j are identical and equal to h. Consequently, 
the nonuniform grid {xij , t k} introduced in this way can be represented in the form of aset 
of n uniform grids {xi, tk}j, shifted in space along coordinate x, one relative to another, 
by an amount equal to hej. -Thus, a calculation on each of the uniform grids with a shift of 
{xi, tk} j can be made from formulas with a constant step, except for two intervals of parti- 
tion along the spatial coordinate x: the first and the last. Steps hzj and hNj differ from 
h and are calculated as follows: h,j = h0j, j = i, ..., n/2; hNj = h0j, j = n/2 + i, ..., n. 

Let us assume that the boundary value problem (19)-(21) has been solvedby one of the 
methods selected on the nonuniform grid {xij, tk}, i.e., the grid function W~j has been found. 

We integrate equation (18) with respect to the time t from t~ t to t~ + ,/u' and with re- 
spect to the coordinate x from x i to xi+ I. We now apply the GLQ methoa to the resulting in- 
tegral. As a result, we obtain formulas for the transition from the calculated values of the 
flows to the values of the temperature: 

j=l 

It is easy to show, as in the case of ODE, that the order of accuracy of the final result is 
increased thereby. 

3. Verification of the Effectiveness of the Procedure for Integrating ODE by the GL~ 
Method. With a systematic procedure we solved the following Cauchy problems: 

932 



y ' =  +__y, 9 ( 0 ) =  1, y(t)=exp(+_t); (23) 

y '  ----- t - b', 9 (0) = O, y (t) = t - -  1 + exp  ( - -  t); (24) 

y '  = 2xv ,  V (0) = 1, 9 (t) = exp  (tz); ( 2 5 )  

y ' = y t g t + c o s t ,  y(O)--- 1, y(t) = \ -f-sint  2; (26)  

V, = y2 + 1, v(O) = O, 9(t) = tgt .  (27)  

The integration step T in all cases was taken to be 0.i. For problems (23)-(26) the inter- 
val of variation for t was 0~t~l; for problems (27) it was 0.~<t~l.5. 

For obtaining an approximate solution at the nodes of the auxiliary grid we chose, in 
the first stage, a stable method for integrating ODE, one which allowed us to easily vary the 
step size in the computational process [i0]. In the second stage we applied the GLQ method 
with the number of nodes n = 2. A comparison of the intermediate and final solutions with 
the known analytical solutions allowed us to make a statement concerning the increase in ac- 
curacy of the final result compared with the intermediate result. 

4. Results of the Numerical Solution by the GLQ Method of a Boundary Value Problem of 
the Second Kind for the Heat Conduction Equation. To verify the effectiveness of the method 
chosen for solving problems (15)-(17) the following boundary and initial conditions were se- 
lected: ~Q)~-~(t)----0 and u(x, 0) = 1 + cos zx. An analytic solution exists for this case, 
given by 

u (x, t) = 1 -+- exp  (-- ~zt) cos ~x .  (28) 

Problem (15)-(17) was solved systematically with specified accuracy using the standard sub- 
routine PKG2 (see [ii]), appropriate for the solution of both linear and nonlinear boundary 
value problems of mathematical physics of the second kind. A comparison of the numerical so- 
lution obtained using the standard subroutine PKG2 with the analytical solution (28) showed 
that the specified accuracy was attained only at the center of the interval of integration 
[0, i] with the steps T = h = 0.i. At the ends of this interval the residual turned out to 
be rather substantial. The same type of situation (with nonessential differences) proved to 
be typical also for the solution of the boundary value problem (19)-(21) by the driver method 
using an implicit scheme with weights [5]. In this case the following conditions were se- 
lected: W = (0, t) = W(I, t) = 0 and W (x, O) =--~sin ~x. Transition from flow values to 
temperature values was effected in accord with the following formula [6]: 

fwlk+l W~+I)/~. ( 2 9 )  U~ +1 = U~ + T[Wi+l - -  

Solution of problem (19)-(21) by the GLQ method showed that the residual, after a recalcula- 
tion in accordance with formula (22), decreased. It should be noted that in applying formula 
(22) one needs to know at least one value of the temperature on the upper layer with respect 
to the time. In this case it is convenient to apply, for example, the method used in [6]. 

The algorithm for increasing the accuracy of a numerical solution by means of the GLQ 
method can also be extended even to nonlinear equations of mathematical physics involving par- 
tial derivatives. In particular, we propose, in subsequent work, to use the GLQ method for 
the numerical solution of a nonlinear dynamic problem from the theory of thermoelasticity 
since in attempting to solve a connected system involving the parabolic equation of heat con- 
duction and the hyperbolic equation of thermoelasticity by the standard finite differences 
method [ii] it was observed that the nature of the behavior of the thermal stress field de- 
pended very strongly on the accuracy of approximation of the temperature field. 

NOTATION 

to, initial time instant; t, time; tf, final time instant; u(t), unknown function in 
analytical solution; y(t), unknown function, numerical solution; f(u, t), known function of 
u and t; Uo, initial condition; T, time step; N, number of subdivisions of interval of inte- 
gration; 0i, values of the GLQ nodes; Yki, approximate solution of Cauchy problem on auxili- 
ary nonuniform grid; e,, maximum error of approximate solution at the first stage; mi, GLQ 
weights; n, number of GLQ nodes; Rki, remainder term; e2, maximum error in representation of 
right side of equation (i); e, error of final result; x, spatial coordinate; ~(t), ~(t)i uo(x), 
known functions; W(x, t), heat flow function; K, number of subdivisions of interval of inte- 
gration over the time. 
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METHOD OF INVERSE DYNAMICAL SYSTEMS FOR THE RECONSTRUCTION OF INTERNAL 

SOURCES AND BOUNDARY CONDITIONS IN HEAT TRANSFER 

P. M. Kolesnikov, V. T. Borukhov, 
and L. E. Borisevich 

UDC 517.958+517.977 

A method for the inversion of linear dynamical systems is described; it can be used 
to investigate several inverse problems in the reconstruction of boundary conditions 
or internal sources in linear transfer equations. 

The inversion of a dynamical system (DS) involves the reconstruction of unknown input 
signals of the system from the results of measurements of the values of certain operators de- 
fined on the instantaneous states of the DS. In the theory of energy, momentum, and mass trans- 
fer the unknown signals can be both internal and external relative to the investigated effect: 
time-varying amplitudes of heat and mass sources and sinks; boundary transfer conditions, e.g., 
boundary temperatures, boundary heat inputs, time-varying contact resistances, etc. Instru- 
mental inverse problems, whose objective is the reconstruction of a true signal from instru- 
ment readings [i], also belongs to the class of problems of reconstruction of DS inputs. 

In the linear approximation an abstract mathematical model for a broad class of transfer 
processes exists in the form of a differential-operator system of equations 

09 = L~ ~ Bu (t), ~, (0) = ~o, ( 1 )  
Ot 

I~ =0, (2) 

which  i s  s p e c i f i e d  i n a  H i l b e r t  s p a c e  H. The e l e m e n t  wo o f  H i s  the  i n i t i a l  s t a t e  o f  t he  p r o c -  
e s s ;  w : [ 0 ,  | § H i s  t h e  t r a n s f e r  p o t e n t i a l ;  B u ( ' )  i s  t he  s o u r c e  f u n c t i o n ;  ~ i s  a l i n e a r  o p -  
e r a t o r  characterizing the boundary conditions; B:U § H and L:H ~ H are linear operators; U is 
the space of values of the function u(.). The specific choice of the operators L, Z and the 
space H depends on the specific details of the transfer potential, e.g., whether it is in the 
form of a temperature field or an electromagnetic field, and also on the characteristics of 
the medium, the geometry of the system, and the boundary conditions. A natural constraint 
identifying the given class of systems of the form (i), (2) is the fact that the restriction 
A of the operator L onto the set of solutions of the equation Zw = 0 is the generating oper- 
ator of a semigroup eat,. which is strongly continuous at zero [2] (or, in other terminology, 
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